热卖商品
新闻详情
...of plane poiseuille flow of viscoelastic liquids,” Trans...
来自 : www.oalib.com/references/13315
发布时间:2021-03-24
ABSTRACT: A long-wave evolution equation is derived using an asymptotic analysis, and the linear stability of a viscoelastic film flowing along the direction of parallel grooves over a uniformly heated topography is studied. A numerical approach adopting spectral collocation technique is used to demarcate the stable and unstable flow regimes. The combined influence of thermocapillarity and viscoelasticity on the films stability is analyzed. By accounting the bottom topography comprising longitudinal gutters, the possibilities of regulating the film dynamics under iso- and nonisothermal conditions and/or optimizing design structure of an apparatus for desirable flow outcomes have been focussed. 1. Introduction Falling films are relevant to a broad class of interfacial instability problems over a wide range of length and time scales in various technological setups since they offer small thermal resistance and large contact area at small specific flow rates. This serves as an advantage in many processes involving cooling, condensation, absorption, and evaporation, thereby regulating the transport of mass, momentum, and heat across the liquid-gas and liquid-solid interfaces. For a detailed review of falling film problems, refer to Nepomnyashchy et al. [1], Kalliadasis et al. [2], and the references therein. Although many studies available in literature have focused attention on Newtonian fluids, many fluids used in industrial applications are rheologically complex and non-Newtonian in nature. This has led to the generalization of Navier-Stokes model to satisfy highly nonlinear constitutive laws to arrive at complex partial differential equations, which are one order higher than the Navier-Stokes equations [3–8]. Unlike Newtonian fluids, which respond virtually instantaneously to an imposed deformation rate, viscoelastic fluids respond on a macroscopically large time scale, known as the relaxation time. The viscoelastic fluids, a subclass of microstructure flows, display both elastic (for deformation rates larger than the inverse relaxation time) and viscous (for deformation rates smaller than the magnitude of the inverse relaxation time) characteristics. The stress in this liquid is neither directly proportional to the strain nor to the rate of strain but displays a complex relationship [9]. A lot of work on the flow and heat transfer characteristics of non-Newtonian fluids has also been done in order to control the quality of the end product in many manufacturing and processing industries ([10] and the references therein). This area of fluid dynamics can simulate
本文链接: http://altransliquids.immuno-online.com/view-675534.html
发布于 : 2021-03-24
阅读(0)
最新动态
2021-03-25
2021-03-24
2021-03-24
2016-07-08
2021-03-25
联络我们
服务热线:4000-520-616
(限工作日9:00-18:00)
QQ :1570468124
手机:18915418616